368 research outputs found

    Heat Conduction In A Layered Structure With An Interface Crack Using The Dual Phase Lag Model

    Get PDF
    In this paper, the transient heat conduction in a layered composite with an insulated interface crack parallel to the boundaries is investigated by using the dual phase lag (DPL) model. Fourier and Laplace transforms are applied and the mixed boundary value problem for the cracked structure under temperature impact is reduced to solving a singular integral equation. The temperature field in time domain is obtained and the intensity factor of temperature gradient is defined. Numerical studies show that overshoot phenomenon may occur due to the combined effect of the insulated crack and application of the DPL heat conduction model. The thermal conductivity and the phase lag parameters have strong influence on the dynamic intensity factor of temperature gradients. The results obtained by the dual phase lag model can be reduced to that by the hyperbolic model and that by the parabolic model

    Information Flow Topology in Mixed Traffic: A Comparative Study between "Looking Ahead" and "Looking Behind"

    Full text link
    The emergence of connected and automated vehicles (CAVs) promises smoother traffic flow. In mixed traffic where human-driven vehicles (HDVs) also exist, existing research mostly focuses on "looking ahead" (i.e., the CAVs receive information from preceding vehicles) strategies for CAVs, while recent work reveals that "looking behind" (i.e., the CAVs receive information from their rear vehicles) strategies might provide more possibilities for CAV longitudinal control. This paper presents a comparative study between these two types of information flow topology (IFT) from the string stability perspective, with the role of maximum platoon size (MPS) also under investigation. Precisely, we provide a dynamical modeling framework for the mixed platoon under the multi-predecessor-following (MPF) topology and the multi-successor-leading (MSL) topology. Then, a unified method for string stability analysis is presented, with explicit consideration of both IFT and MPS. Numerical results suggest that MSL ("looking behind") outperforms MPF ("looking ahead" ) in mitigating traffic perturbations. In addition, increasing MPS could further improve string stability of mixed traffic flow.Comment: This paper has been accepted by 26th IEEE International Conference on Intelligent Transportation Systems ITSC 202

    Human Preference Score v2: A Solid Benchmark for Evaluating Human Preferences of Text-to-Image Synthesis

    Full text link
    Recent text-to-image generative models can generate high-fidelity images from text inputs, but the quality of these generated images cannot be accurately evaluated by existing evaluation metrics. To address this issue, we introduce Human Preference Dataset v2 (HPD v2), a large-scale dataset that captures human preferences on images from a wide range of sources. HPD v2 comprises 798,090 human preference choices on 433,760 pairs of images, making it the largest dataset of its kind. The text prompts and images are deliberately collected to eliminate potential bias, which is a common issue in previous datasets. By fine-tuning CLIP on HPD v2, we obtain Human Preference Score v2 (HPS v2), a scoring model that can more accurately predict human preferences on generated images. Our experiments demonstrate that HPS v2 generalizes better than previous metrics across various image distributions and is responsive to algorithmic improvements of text-to-image generative models, making it a preferable evaluation metric for these models. We also investigate the design of the evaluation prompts for text-to-image generative models, to make the evaluation stable, fair and easy-to-use. Finally, we establish a benchmark for text-to-image generative models using HPS v2, which includes a set of recent text-to-image models from the academic, community and industry. The code and dataset is available at https://github.com/tgxs002/HPSv2 .Comment: Revisio

    Experimental Validation of DeeP-LCC for Dissipating Stop-and-Go Waves in Mixed Traffic

    Full text link
    We present results on the experimental validation of leading cruise control (LCC) for connected and autonomous vehicles (CAVs). In a mixed traffic situation that is dominated by human-driven vehicles, LCC strategies are promising to smooth undesirable stop-and-go waves. Our experiments are carried out on a mini-scale traffic platform. We first reproduce stop-and-go traffic waves in a miniature scale, and then show that these traffic instabilities can be dissipated by one or a few CAVs that utilize Data-EnablEd Predicted Leading Cruise Control (DeeP-LCC). Rather than identifying a parametric traffic model, DeeP-LCC relies on a data-driven non-parametric behavior representation for traffic prediction and CAV control. DeeP-LCC also incorporates input and output constraints to achieve collision-free guarantees for CAVs. We experimentally demonstrate that DeeP-LCC is able to dissipate traffic waves caused by car-following behavior and significantly improve both driving safety and travel efficiency. CAVs utilizing DeeP-LCC may bring additional societal benefits by mitigating stop-and-go waves in practical traffic.Comment: 8 pages, 6 figure
    corecore